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Hello! My name is Keith Packard, I work in the Device OS group at 

Amazon as a Senior Principal Engineer. Today, I'm going to talk about 
picolibc, a C library designed for embedded 32- and 64- bit 
microcontrollers. 



  

 

picolibc
● Why start another C library project?
● How picolibc was developed?
● What are the results?
● Who is using picolibc?
● Where is picolibc going in the future?

In this presentation, I'll describe what I see as the requirements for an 
embedded C library, the pieces from which picolibc was built, how 
development progressed, results of that development along with 
several projects that have picolibc support integrated into them. Finally, 
I'll briefly touch on future work that I hope to see done in picolibc.



  

 

Small System Considerations
● Small Memory (think kB, not GB)

– RAM is more constrained than ROM
– Avoid using the heap

● Limited floating point
– May have only 32-bit floats
– May have none at all

● Getting started is hard

Small systems are small. They can be really small. The embedded hardware 
I fly uses systems with 32kB to 128kB or ROM and 4kB to 32kB of RAM. 
They often use low-performance 32-bit cores, some have a 32-bit FPU, 
but many have no FPU at all. Developers writing long-running 
embedded software often want to avoid depending on dynamic 
allocation as it's easist to prove malloc will never fail if malloc is not 
linked into the application.

As a developer, one of the steepest learning curves with embedded 
development is getting the very first 'hello-world' application compiled, 
linked, installed and running. Arduino has had tremendous success by 
making that process easy enough for me to teach to middle school kids.



  

 

Embedded Libc Needs
● String Functions (strcpy, memset)

– Ideally accelerated for architecture
● Math Functions (acos, j0, sqrt)

– Often for soft-float processors
● Stdio (printf, sscanf)

– debugging
– data exchange

● Licensing
– Share-alike licenses are challenging

Embedded systems generally make modest demands on the C library. The 
most commonly used functions are string and memory APIs; things like 
strcpy, memmove and the like. Applications doing computation may 
need some math functions, like sqrt, sin or even bessel functions.

 Standard I/O will often be only used during debugging to send output to 
a serial console to help diagnose software and hardware issues. 
However, applications may also use these functions to handle JSON, 
YAML or other text interchange formats and so strict standards 
conformance can be critical.

While I am a strong proponent of share-alike licenses, a C library needs a 
pragmatic approach to be useful to all developers. A clear MIT or BSD 
license is best practice in this space.



  

 

Developer First Steps
● Startup code

– Initialize RAM, setup clocks and interrupts
● Linker script

– Memory layout
● Debug output

– Serial ports require drivers and working clocks 

To make starting with a new embedded platform easier, developers will 
benefit from extra support in the C library. First, the processor, memory 
and library need to be initialized.

Second, the linker needs to know how to lay out the application in ROM 
and RAM. This includes hardware-specific information, processor setup 
instructions and library initialization code.

Finally, providing debug output from applications using semihosting or 
other architecture-specific mechanism lets the developer see debugging 
information before clocks and serial port drivers are working. 

With these three tools, a new SoC can be brought up only knowing the 
memory layout of the device as we'll see later in some examples.



  

 

Current 32-bit Libc Options
● newlib and newlib-nano

– excellent API support, including optimized 
assembly code and solid math functions.

– designed for systems with an OS
– development focused on Cygwin target
– libgloss wraps OS functions into POSIX-like API
– stdio is fast, but large and malloc-intensive

● various proprietary options
– closed source
– often brought up from 8-bit environments

When I started doing embedded development in the modern era in 2009, I 
was using an 8051 SoC. The compiler, SDCC, came with a small C library 
so I didn't have to think about it. 

In 2012, when we build our first cortex m3 board, I had to also find a new 
C library. For this project, newlib was too big and required too many 
support routines in the form of libgloss, including sbrk for malloc, 
which was required for stdio. 

I initially settled on pdclib as that was at least reasonably small. However, 
it used excessive amounts of stack space for printf, and had no math 
support. This library seems to be an experiment in building a small C 
library, but not in building a C library for small systems.

Some SoC vendors provide proprietary C libraries. These are often ports 
from older 8- and 16- bit systems which can lack compliance with 
modern C standards in some areas. And, of course, they're not free 
software, which makes them uninteresting to me.

After a couple of years using pdclib, I decided to return to newlib and see 
what could be done to make that usable for my work.



  

 

newlib concerns
● Stdio

– A lot of code and uses a lot of RAM
– Requires a large number of POSIX(ish) APIs

● Libgloss
– A shim between the POSIX apis and the underlying OS
– Not relevant on embedded systems with no OS

● struct _reent
– holds all per-thread state in the library
– even for functions you don't use
– an unexpected malloc user

● Out-dated coding practice
– newlib still has K&R function definitions in places (!?)
– Many signed/unsigned confusions, especially in wchar_t and stdio
– Many (many) warnings

● No integrated test suite
– Without testing, there's no way to know when things break

I want to say first that newlib is a great project; the code is easy to work on, the 
community is welcoming and supportive and I've been happy to collaborate with 
them. Everything here relates to using newlib for my small embedded projects, 
which is not what newlib is really designed for.

In looking at the changes I wanted to make, the first thing on my list was stdio. 
Newlib's stdio is designed to offer good performance and full compatibility on 
systems with an underlying POSIX api. It has internal buffering, and allocates space 
on the heap for them. Replacing the whole thing seemed like the best option.

I also wanted to get rid of the libgloss OS shim layer. libgloss was originally designed as 
an interface between newlib and whatever underlying operating system it was run 
on. With bare-metal environments, there is no OS, and so there really isn't a reason 
to have this library any more. Newlib uses POSIX interfaces internally, porting to an 
RTOS is usually a simple matter of making sure the necessary POSIX interfaces are 
available. Fortunately, most of the common uses for libgloss APIs were in stdio; by 
replacing that, the bulk of the problem was already solved.

One huge consumer of RAM in newlib is 'struct _reent'. This struct holds all per-thread 
state for the entire library. Replacing this with modern thread local storage 
techniques would free up a lot of memory while still allowing applications to take 
advantage of library APIs which needed persistent state.

Newlib is an old code base that has seen development extend back to the pre-ANSI era 
of compilers. The C language has changed a lot since then, and how we use the 
language has changed even more. It's been a long time since I defined a new API 
with a bare 'int' type; we know now that it's best to use a more specific type that 
won't surprise you with overflow issues or sign errors on some new platform. At a 
minimum, the library should compile cleanly with -Wall -Wextra.

Finally, it's unreasonable to expect code review alone to catch errors in changes to the 
library. An extensive and automated test suite is table stakes for a project of this 
size.

I got started hacking on the stdio changes that I wanted to make and sent them in to 
the newlib mailing list to see what feedback I might get. That was when the reality 
of what newlib was hit me. Newlib is not a library for embedded applications. 
Newlib is the Cygwin C library which happens to be used by many embedded 
developers lacking an alternative. In particular, radical changes to the API and ABI 
of the library could never be integrated as those would break binary compatibility 
for Cygwin applications. So I decided to fork newlib and start a new project.



  

 

picolibc
● newlib math, i18n, strings

– good performance, wide support
● stdio adapted from AVR libc
● 'struct _reent' removed

– All thread-local values use toolchain TLS
● sample startup code, linker scripts
● semihosting support
● Fix warnings, switch to C18

– Builds with --std=c18 -Wall -Wextra -Werror
● New meson-based build system
● Testing
● Pure BSD licensed library code.

Once I decided to abandon attempts to upstream my work, I felt free to make all of 
the changes I wanted, building the library as I thought best.

The good parts of newlib I kept; the math, string and locale implementations work 
great.

Having had experience with AVR libc on Atmel processors, I took that code as the basis 
for a new stdio implementation.

To get rid of struct _reent, I decided to replace it with thread local storage as 
supported by the C language. That involved changing nearly every file in the library, 
removing the parameter from internal functions, creating new thread-local versions 
of all global data. 

The tests need to run on the target architectures. Picolibc includes enough 
infrastructure to build and run applications on bare-metal hardware without 
depending on any external software. That includes startup code, linker scripts and a 
mechanism to get error codes out of the test and up into the test framework 
running on a Linux host. These are also what developers need when starting work 
with a new chip.

Changes to move the code base from old-style C to more modern practice were made 
so that picolibc now builds with a C18 compiler and builds cleanly with GCC/Clang -
Wall -Wextra.

Newlib also uses an old-style build system, with a maze of autotools bits and nested 
configure scripts. Instead of modifying those, I decided to overlay a new build 
system on top using meson. This had a couple of advantages: First, it meant that I 
could ignore the existing build system so that upstream changes to that wouldn't 
affect merging code changes in. Second, meson builds are dramatically faster. A full 
build for all embedded arm targets, compiling 28429 files, takes only 38 seconds 
with an empty compiler cache. With the cache hot, that same build takes but 6.3 
seconds.

For some initial testing, I re-animated the newlib test suite and then started adding 
more tests.

Newlib includes piles of GPL code, but none of that is likely to be used in a non-Cygwin 
binary. To make the picolibc license status clear, all of the non-BSD licensed library 
code has been removed. The printf test cases came from a GPL licensed testing 
project, but those are not part of any possible library build.



  

 

Math code
● Can be compiled two ways

– “IEEE” mode (no errno) or “POSIX” mode (errno)
● ARM added some new 'float' implementations using 

'double':
– Less accurate than old pure 32-bit versions
– Not used in default picolibc builds

● Fixed issues with errno/exception values
– modern compilers make exception generation difficult.

Now I'll start going into some of these changes in more detail, starting with the math 
code.

One of the most useful bits of newlib is the math library. That includes 
implementations of the standard math functions as specified in IEEE-754, ANSI-C 
and POSIX. Lots of this code came from Sun back from the early 1990's.

A couple of years ago, ARM provided some new float code using double precision 
intermediates to reduce the number of instructions necessary for these operations. 
Unfortunately, the resulting code is less accurate than the old Sun code. And, of 
course, it's really only useful on hardware that has 64-bit floats. As a result, picolibc 
disables this code in default builds.

Some of the math library code is split into two layers; a lower-level IEEE-754 API which 
does the computation including raising exceptions, and a higher-level C API which 
uses the lower-level function and then also updates errno as appropriate. The 
library can be built without errno support, which eliminates these C wrappers and 
exposes the IEEE functions using the C names. These functions should be squashed 
together, moving the errno bits into the lower level functions.

ANSI-C has slowly refined the use of errno and now has relatively consistent behavior 
based on the underlying IEEE-754 exception definitions. POSIX constrains behavior 
further, for instance C17 says that a domain error may occur for pow(0,0) and 
provides no hint to the value returned while POSIX requires a return value of 1.0 
and that no errors are raised. Picolibc code has been modified to follow the POSIX 
spec as closely as practical.

Exception generation relies on executing instructions that raise the appropriate 
exception, and that is challenging when C compilers work hard to move 
computation from runtime to compile time. I don't know of a sure-fire way to force 
a particular computation to happen at run-time; we've adopted some techniques 
which work with existing compilers, but will need to keep testing the library to 
make sure compilers don't outsmart us in the future.

With the picolibc testing infrastructure in place, tests were added to verify errno and 
exception values for all math library functions and all exception causes. 



  

 

stdio

● Started with avrlibc code
● Added flush to allow for buffering
● Added POSIX backend

– requires read/write/lseek/open/close
● Changed ungetc() to use atomics for re-entrancy
● FILE takes just 16 bytes of RAM

typedef struct __file {
ungetc_t unget; /* ungetc() buffer */
uint8_t flags; /* flags, see below */
int (*put)(char, struct __file *); /* function to write one char to device */
int (*get)(struct __file *); /* function to read one char from device */
int (*flush)(struct __file *); /* function to flush output to device */

} FILE;
extern FILE *const stdin, *const stdout, *const stderr;

Picolibc inherits its stdio from AVR libc. This code uses a small in-RAM 
struct to hold per-FILE state. Picolibc stdio is built on two primitive 
operations – get a character, put a character. Any FILE struct includes 
pointers to functions which do that. This means that implementing I/O 
for another system involves implementing just these two functions, not 
a larger set of POSIX APIs.

To make picolibc's stdio code re-entrant, without requiring locking, the 
'unget' field is manipulated with atomic operations. As this field gets 
modified at run-time, the struct itself needs to live in RAM.

There are macros which help applications initialize this structure correctly, 
also inherited from AVR libc.

stdin, stdout and stderr are global pointers to FILE structs; they are 
declared const as picolibc doesn't modify them and so that they may be 
placed in ROM. These can all point at the same underlying FILE object if 
desired.

For systems that do support POSIX functions, picolibc provides fopen and 
friends using those. fdopen creates a FILE struct with getc and putc 
pointing at functions inside picolibc which then use POSIX read and 
write. This support doesn't extend to fseek or rewind; those are not yet 
implemented, although could be added fairly easily.

The stdio code has made some obvious tradeoffs for size and simplicity vs 
performance; funneling all I/O through narrow 1-byte functions slows 
things down. There is also no multi-byte or wide character support. For 
my applications, those have seemed like good choices; I'd like to hear 
what other people think.



  

 

printf & scanf
● float code takes a lot of space

– but is careful to avoid needing soft-float
– offer “int-only” and “float-only” versions
– Use Ry  malloc-free “exact” float conversionsū

● Most of C18 (except numbered arguments) 

Printf, and scanf, to a lesser degree, are key functions for any C library. 
When used for debugging, they needs to be small and avoid interfering 
with other parts of the system. When used for data interchange, they 
need to be ANSI-C/POSIX compliant. The original AVR libc printf is 
remarkably tight, and has only a few issues with standards 
conformance. 

The one major gap is in printing and scanning floating point numbers. 
These are fundamentally base conversion functions, converting 
between the base-10 printed form and the base-2 internal form. Think 
about how 0.1 is represented in binary form: 0.0{0011}, an infinite 
repeating fraction. This makes exact conversion impossible.

I re-define “exact” float/string conversion as one where a number printed 
and rescanned generates exactly the same bits. newlib, glibc and other 
C libraries use arbitrary precision numbers for “exact” conversion. This 
is slow, large, and generally requires malloc. Picolibc uses the Ry  fixed ū
precision algorithms developed by Ulf Adams to perform these 
operations – 128 bits for double, 64 bits for float. This reduces code size 
and avoids malloc calls.

Picolibc has numerous additional fixes and improvements, including hex-
format floats so that it nearly meets the C18 requirements, the notable 
exception being numbered arguments.



  

 

Thread  Local Storage
● TLS instead of 'struct _reent'
● Linker limits TLS  space to in-use vars
● Add API to manage TLS

– _set_tls(): Set TLS base (thread switch)
– _tls_size(): Get TLS area size (thread alloc)
– _init_tls(): Initialize TLS area (thread create)

● Initial static TLS area setup by sample linker script
● Saves a ton of RAM, eliminates malloc calls from deep within the 

library.

Newlib was developed before threading was common in POSIX 
environments. In that era, there was no C language support for thread 
local storage. To work around this, newlib introduced 'struct _reent'. 
This struct contains every variable in the library which needs to be 
thread-specific according to the POSIX. That includes common things 
like 'errno' and rarely used items like 'signgam', the global variable 
used to hold the sign returned from lgamma. This uses 656 bytes on 
arm. Newlib-nano includes changes which dynamically allocate much of 
this struct as needed reducing the static structure to 96 bytes.

Picolibc eliminates this struct, instead using the C language __thread 
storage class. The linker gathers together all of the variables of this 
class, effectively creating a struct on the fly. Only TLS variables used by 
the application end up in the application. At run-time, access to these 
values uses a ABI-specific mechanism, for some architectures, Picolibc 
supplies helper functions. Picolibc also provides functions to allocate, 
initialize and set up the ABI-specific mechanism so that applications can 
manage multiple TLS blocks without needing a detailed understanding 
of the target architecture.



  

 

Example Startup Code (crt0)
● Initialize CPU

– Stack pointer and other registers
– FPU
– MMU

● Initialize memory
– Copy ROM bits to .data segment
– Clear .bss segment

● Setup interrupt controller
– provide handlers for system exceptions

● Arm, Thumb, Aarch64, RISC-V, x86, x86_64
● Three versions:

– regular: constructors, spins if main returns
– --crt0=hosted: constructors, destructors and calls exit when main returns
– --crt0=minimal: no constructors, spins if main returns

I was a bit surprised when I wrote my first Cortex M3 code that I actually 
needed to initialize the processor, fill in the interrupt vectors and 
initialize memory before starting my application. On 8- and 16- bit 
processors, this code is usually provided for you along with the compiler 
and C library. Like so many others, I wrote an application-specific 
version of the necessary code and compiled that with my application.

For Picolibc, I decided to take that and adapt it to be a bit more general, 
adding a default interrupt vector, initializing any FPU as well as setting 
up TLS. Now it could be used on most Cortex-M processors.

After that, I wrote equivalent code for RISC-V and aarch64. Then 
discovered that there are non-Thumb ARM processors which require 
completely different initialization code, so I added that as well.

Finally, my friend Mike Haertel wrote startup code for x86 CPUs, both to 
i686 as well as amd64 mode. I bet very few of us have ever considered 
the x86 as a bare-metal processor.

As usual for embedded programming, these need to be customizable 
depending on the target environment. They are built three ways 
depending on the API support required; 'normal' which invokes 
constructors but spins if main returns, 'hosted', which also calls exit(ret), 
passing the return value from main() and 'minimal' which doesn't even 
bother to call the constructors. I use the 'hosted' version when running 
under qemu to capture the exit status from test applications and report 
that to the test framework. Most of my actual embedded applications 
use the normal variant as I often have a constructor or two.

Of course, some environments need even more control over startup and 
end up writing their own code. For them, the picolibc startup code can 
show what they need to do to support the library.



  

 

Linker script
● Provide defaults for simple applications

– User  specifies RAM/ROM memories
● Allows configure tests to succeed for other projects

– gcc hello-world.c builds and links (but doesn't usually run)
● Builds initial TLS block out of static memory

– With clever linker script hacks
● Demonstrates requirements for more advanced users

I sometimes think that linker scripts are a dark art in embedded 
development world. The scripting language is a bit unusual, and the 
contents depend greatly on the implementation details of the C and C+
+ compilers, along with details about how libc works.

Gathering all of those requirements together and writing a working script 
often takes many iterations and experiments, and even then many 
scripts I've written only work by accident.

For picolibc, I've tried to create a sample linker script that shows all of the 
pieces necessary to build successful C and C++ applications, including 
handling thread-local storage and C++ exceptions. 

The only information the developer needs to provide is ROM and RAM 
addressing and sizes, and perhaps the desired size of the stack. For 
more sophisticated developers, the sample script should explain the 
language and picolibc requirements and help shorten the time to 
develop their own script.

This script expects applications to put objects in special sections, for 
instance the NVIC interrupt vector in Cortex-M processors usually needs 
to be the very first thing in flash so that the reset vector and initial 
stack pointer can be loaded. The script also expects many symbols to be 
defined so that the code knows how memory is arranged, for instance, 
the startup code that sets up RAM needs to know where the contents 
of initialized data are in flash and where they need to go in RAM. 
These are all defined in the picolibc documentation, but using the 
sample linker script can help clarify how to set things up.



  

 

semihosting
● Interface to host OS via debugger or QEMU

– Full support for v2.0 on ARM and RISC-V
● Console and file I/O

– Printf debugging even before clocks are running
● _exit

– Passes exit status through qemu

Semihosting allows a program running in a debug environment to 
communicate with the debugger. This can be used to provide debug 
output and status information even before the system clock and I/O 
devices are running. Semihosting works with a hardware debug link 
like JTAG, or from within QEMU.

To use semihosting, the program places information in registers and 
memory and then invokes a breakpoint or other instruction which 
triggers a debugger-visible event that halts the processor. The debugger 
can then use the register and memory contents to perform an 
operation, be that writing to the console or reading and writing data 
from the debugger host file system.

ARM and RISC-V share the same spec which picolibc fully supports. x86 has 
a much smaller set of operations, limited to writing to the console and 
terminating execution.



  

 

Testing
● Target testing
● Running tests
● Test status

Testing is key to the success of any system software like picolibc. Because most of the 
library will not be used by any one application, it's difficult to do in-situ evaluation 
of the code. Instead, explicit low-level tests are needed to ensure the library 
conforms to the expected definitions. 

Fortunately, C libraries have several comprehensive specifications that define library 
behavior. This makes building a test suite a matter of identifying statements in the 
specifications that can be converted to assertions, then writing code to test them.

Newlib had an existing test suite which was not working. Fixing those tests and getting 
the code passing again took several months. The code fixes were shared with 
newlib, but there was no way to fix the test suite in newlib itself as it doesn't have 
any way to run tests on the target systems.

To validate the tests, they are run against both picolibc and glibc.



  

 

Testing on Embedded Targets
● Run tests on bare metal systems

– Test actual target architectures
– Runs target-specific code (asm mostly)

● Requires built-in bare-metal support
– Startup code
– Linker scripts
– Exit status reports

● Run on QEMU to avoid building an IOT farm.
– Have extensions to QEMU to support more ARM architectures. Rejected upstream.
– Using semihosting for ARM, RISC-V and x86

Picolibc contain numerous architecture-specific code paths, optimizing for space and 
speed using a combination of special C code and hand-written assembly. The target 
architectures have varying characteristics as well, from floating point support to 
sizes of basic data types and even signedness of 'char' and 'wchar_t' types. 

Making sure all of this code operates correctly can only be done by executing it on all 
of the target architectures. Picolibc does this by building bare-metal tests for each 
architecture and then running them under QEMU which avoids needing a pile of 
sketchy embedded hardware for testing.

Bare metal code requires hardware specific support in the form of startup code and 
linker scripts. Finally, the tests also need some way to report status back to the test 
harness, which uses the semihosting support in QEMU.

QEMU includes support for numerous ARM architectures, but not all of the supported 
CPU types are actually available. Any non- Cortex-M CPU can be used in 'none' 
machine, but there is no equivalent for cortex-m cpus, which are only available in 
full SoC models. As a result, only the Cortex-M3 CPU can be tested in upstream 
QEMU. I submitted a patch adding a 'virtm' machine that enabled testing of all 
Cortex-M models in QEMU but that was rejected as out of scope for QEMU.



  

 

Test Status
● newlib includes over 74000 tests

– Thousands (and thousands!) fail
– Not obviously used in decades

● picolibc has fixed these
– All pass on ARM, AARCH64, RISC-V and x86 today

● Many new tests added
– printf/scanf validation
– math errno/exceptions
– malloc stress test

Within the upstream newlib source are thousands and thousands of tests. Essentially 
none of these work, having been neglected for years. 

The math tests appear to have been translated a couple of times, corrupting the 
expected values; places which should have been NaN or Inf had been replaced with 
64.0. Fortunately, the test code also contains paths to compute the expected values 
by calling the appropriate routines. I regenerated all of the tables by using glibc as 
an oracle.

New tests have been added to test new code as well as in response to bug reports. 
With a major re-write of the nano-malloc code, extensive malloc validation and 
stress testing was used to make sure it works in a wide range of environments. An 
external printf test suite was incorporated to make sure changes to printf continue 
to produce the expected results. Finally, a sequence of bug reports against newlib's 
math routines which produced incorrect exception and errno results led to the 
development of tests against all libm functions to make sure they produce the right 
errno and exception values.

To make sure the tests continue to work correctly, they are built against glibc and the 
output verified for that library as well as picolibc.

With the tests reconstructed and a test harness built that uses QEMU to run them, all 
of the tests now pass on ARM, AARCH64, RISC-V and x86 today.



  

 

GitHub actions
● Linux testing using GCC and Clang

– GCC: native, aarch64, amd64, arm (23 arch), lx106, riscv (36 
arch), rv32imac, i686

– Clang: thumbv7m, thumbv7e+fp, rv32imafdc, rv64imafdc
– 19 config flag settings
– 59 * 19 = 1121 complete picolibc builds

● Mac OS X testing
– Build 13 config flag settings using native compiler

While the official upstream host for picolibc is at keithp.com, there is an active picolibc 
project at github which accepts bug reports and merge requests. There are github 
actions that tests on each change to the 'main' branch and all merge requests to 
'main'. This allows problems to be caught before being merged, offering 
confidence that the library continues to work as expected even across fairly 
significant changes.

github appears happy to do a lot of testing for the project. Tests are built and run on 
aarch64, amd64, arm, riscv and i686. Tests are built on lx106. In addition, most of 
the tests can run 'natively', using the underlying system C library to provide POSIX 
functions. The actions build and run tests on both Linux and Mac OS X systems using 
this mechanism. In total, picolibc is built 1121 times and the entire test suite is run 
1026 times.



  

 

Recent Picolibc Work
● libm merged into libc
● hex format float support
● -Wextra cleanups
● C++ fixes

The math library was merged into libc.a because some of the libc functions wanted to 
use math functions. This means that applications need not use -lm to get access to 
math functions. A stub libm.a is included to provide backward compatibility.

Printf and scanf gained support for hex-format floats (%a in printf). The printf support 
is designed to produce the same output as glibc does, which is easy to understand 
for those of us familiar with IEEE 754 floating point formats.

An ongoing source of trouble has been making C++ applications build with picolibc. 
Some of that has to do with how GCC sets up include paths, and how the libstdc++ 
headers are written. For crosstool-ng, I've actually got a patch to GCC that removes 
uses of '#include_next' in header files as that would cause the compiler to find non-
picolibc headers following the libstdc++ headers.

For the last week or so, I've been working to clean up the library so that it builds 
cleanly with the -Wextra compiler flag.  Quite a bit of this work was caused by old 
style code which used inappropriate types, like 'int' for sizes or wint_t instead of 
wchar_t. This found a number of possible bugs, but nothing that would likely cause 
problems in real use.



  

 

hello.c
 #include <stdio.h>
 

 void main(void)
 {
 printf("hello, world\n");
 }
 

Now it's time to show some samples of how picolibc can be used. This first 
one should be familiar to anyone who has learned to program in C.

hello.c is the classic 'First C Program' which can be used to verify a 
toolchain including the C library and the runtime environment. Because 
the string passed to printf is constant, and ends with a newline, GCC 
optimizes this into a call to puts, so the resulting binary doesn't contain 
printf at all.



  

 

stm.ld
 __flash =      0x08000000;
 __flash_size = 0x00020000;
 __ram =        0x20000000;
 __ram_size   = 0x00004000;
 INCLUDE picolibc.ld

This linker script describes the memory layout of an STM32L152RBT6 
Cortex-M3 SoC. It shows 128kB of flash starting at 0x0800_0000 and 
16kB of RAM starting at 0x2000_0000. The picolibc linker script, 
included at the end of this file, takes those values and lays out the 
application in memory.

Flash contains instructions, constant data and initialization values for the 
RAM. At program start, those initialization values are copied to RAM 
and the zero-initialized area of RAM is cleared.

If your application is fairly simple, this style of linker script will probably 
work fine. If not, you can use the picolibc.ld script as a guide to what 
picolibc needs. 

It might be nice to include a collection of linker scripts like this one with 
definitions for common microcontrollers; that would be one less step 
for starting a project. 



  

 

Compiling
 arm-none-eabi-gcc \

 --specs=picolibc.specs \
 --oslib=semihost \
 --crt0=minimal -Os -g \
 -mcpu=cortex-m3 -Tstm.ld \
 -o hello.elf hello.c

 

This command invokes gcc to compile the application and link it with 
picolibc. The –specs=picolibc.specs option loads a file adding command 
line parsing for picolibc options like --oslib= and --crt0= as well as 
telling the compiler how to find the right picolibc files.

--oslib=semihost adds the picolibc libsemihost.a file after libc.a to connect 
picolibc to the semihosting environment. There's also a dummyhost 
library which provides stubs for tinystdio so that you can link an 
application using stdio without any OS layer. -Tstm.ld uses the linker 
script to arrange the program in memory.



  

 

Size of hello.elf
 

 

 

 

File ROM RAM

hello.elf 352 24

This shows the amount of Flash and RAM used by the sample application. 
Because printf has been replaced with puts by the compiler, the binary 
is surprisingly small. This is a complete Cortex-M3 image that runs on 
real hardware and includes the interrupt vector and semihosting 
interface routines.



  

 

Running on hardware
 openocd -f board/stm32ldiscovery.cfg \

 -c "program hello.elf" \
 -c 'arm semihosting enable' \
 -c 'reset run'

This script loads the program in flash and starts it running while 
monitoring the device for semihosting requests. Console output from 
the application appears on stdout. This example is unusually short 
because openocd includes information about the stm32l discovery 
board, which includes a built-in debug connection which avoids 
needing to specify both SoC and debug dongle information.



  

 

Running under qemu
 qemu-system-arm \

 -chardev stdio,id=stdio0 \
 -semihosting-config enable=on,chardev=stdio0 \
 -monitor none -serial none \
 -machine mps2-an385,accel=tcg \
 -cpu cortex-m3 \
 -device loader,file=hello-qemu.elf \
 -nographic

You can also run this application under qemu. That requires re-linking 
using a different script as the memory addresses supported by the 
mps2-an385 QEMU model are different from the STM32L152RBT6 with 
flash starting at 0x0000_0000 instead of 0x0800_0000. Otherwise, 
the .elf file is identical. QEMU also supports semihosting, which can be 
enabled on the command line. A script like this is how picolibc runs all 
of the tests during development.



  

 

Using the float printf code
 #include <stdio.h>
 

 void main(void)
 {
     printf("%g\n", printf_float(355.0f/113.0f));
 }
 

Here's a program to show the size of picolibc's printf function. Unlike the 
first example, this one includes an argument so that it isn't converted 
into a call to puts. We'll use a floating point number to show the size of 
the different versions of printf provided in picolibc. Using a bit of 
symbol definition magic, picolibc lets you select which type of printf 
function your application will use at link time. 

Because of the way floating point numbers are passed to varargs 
functions like printf, we need to use printf_float to handle the 32-bit 
float. When using the float-only printf,  this inline function wraps the 
32-bit float in a 32-bit int, preventing it from being extended to a 64-
bit double. When not using the float-only printf, this function casts to a 
64-bit double.

This example can be compiled and run like the hello-world example.



  

 

Comparing sizes (cortex m3)

 

Version ROM
(bytes)

RAM
(bytes)

Full 6872 24

Float 5360 24

Integer 1400 24

Newlib Float 15584 1200+1084

Newlib Integer 5760 800+1084

This table shows the size differences of the variants. The first is the full 
version of printf, supporting 32 and 64 bit floats. The second only 
provides support for 32-bit floats, the third has no floats and doesn't 
support 64-bit ints. Adding 64-bit int support increases the size by 400 
bytes. 

I also included sizes for the original newlib code, both full float and 
integer-only. These show the initial RAM size plus the amount of 
memory allocated from the heap.

You can see from these numbers why many developers avoid printf and 
stdio, often writing custom I/O routines. Adapting the AVR stdio and 
printf code, along with the Ryu floating point conversion code, 
provides a stdio that fits in most ROM budgets while using very little 
RAM.



  

 

Blinky Lights!
 #include <stdint.h>
 

 typedef volatile uint32_t vuint32_t;
 

 #define RCC_AHBENR              (*(vuint32_t *) 0x4002381c)
 #define RCC_AHBENR_GPIOBEN      (1)
 

 #define GPIOB_MODER             (*(vuint32_t *) 0x40020400)
 #define GPIOB_ODR               (*(vuint32_t *) 0x40020414)
 #define MODER_OUTPUT            (1)
 

 void delay(int count) { while (count--) __asm__("nop"); }
 

 void main(void)
 {
     RCC_AHBENR |= (1 << RCC_AHBENR_GPIOBEN);
     GPIOB_MODER |= ((MODER_OUTPUT << (6 << 1)) | (MODER_OUTPUT << (7 << 1)));
     GPIOB_ODR = (1 << 6) | (0 << 7);
 

     for (;;) {
         delay(40000);
         GPIOB_ODR ^= (1 << 6) | (1 << 7);
     }
 }
 

File ROM
(bytes)

RAM
(bytes)

blink.elf 264 8

Here's one last example, which is more like a typical embedded 
application. This program blinks the blue and green LEDs on an STM 32 
L Discovery board by accessing the GPIO controller on the SoC, 
programming the two pins connected to LEDs as outputs and then 
toggling them with a delay loop to slow things down enough to see.

This example doesn't use much of the library, but it does use the startup 
code and linker scripts, so even this short example is easier to write 
with picolibc than without.



  

 

Projects with picolibc support
● GCC
● crosstool-ng
● RIOT
● zephyr
● FreeRTOS
● qemu
● personal projects

Now I want to talk about work done in other projects related to picolibc, 
including toolchains, operating systems and hardware emulation.



  

 

Picolibc and C++
● libstdc++ iostream used a mix of stdio and POSIX 

apis
– Directly accessed private FILE struct fields
– Supported only glibc and newlib

● --enable-stdio=stdio_pure uses only stdio functions
– Supports any stdio implementation

● picolibc also supports c++ exceptions

Lots of people are using C++ for embedded applications, and they often 
want to use higher level libraries, including libstdc++. One of the pieces 
of libstdc++ is <iostream> which provides abstractions on top of regular 
C stdio. The GCC libstdc++ implementation has performance 
optimizations which penetrate the stdio API abstraction with custom 
code for both glibc and newlib, directly manipulating private fields 
within the FILE struct, and bypassing the C library with direct calls to 
the underlying POSIX API. I submitted patches to GCC which eliminated 
these optimizations. This is selected by building GCC with –enable-
stdio=stdio_pure and is included in GCC 11.



  

 

CompCert support
● CompCert is a formally verified C99+ 

compiler
● It is not GCC (or Clang) compatible
● Numerous changes were required in 

picolibc to make the code compatible 
with this standard.

The Inria CompCert project is building a formally verified C compiler for 
embedded software. Projects using this compiler would prefer a C 
library also built with the verified compiler. CompCert developers have 
provided patches to picolibc that allow it to be built with their 
compiler. Most of these changes fix GCC/Clang specific language 
constructs and so they have generally improved the portability and C 
standards conformance of the code.



  

 

Crosstool-NG
● Toolchain building system used by Zephyr 

(among others)
● Added support for simultaneously 

building newlib, newlib-nano and picolibc
● Also builds libstdc++ for all three C 

libraries

Crosstool-ng is a cross compilation toolchain building system. Select a 
target system and a suite of libraries and crosstool-ng will download 
the bits, build the host tools, compiler and libraries creating a self-
contained toolchain ready to build your embedded projects.

Zephyr uses crosstool-ng to build its native toolchain.
One of the assumptions built into Crosstool-ng is that there is only one C 

library.  For most users, that's pretty reasonable as they only need to 
use one C library to build their projects. And, that's how initially 
integrated picolibc into crosstool-ng; offering another C library 
alternative to newlib and newlib-nano. With the resulting toolchain, I 
managed to build and test numerous applications, including the Zephyr 
tests.

However, that's not how the Zephyr project was using Crosstool-ng. 
Within the Zephyr fork of crosstool-ng was a kludgy patch to build both 
newlib and newlib-nano. This allowed Zephyr users to download a 
single toolchain and decide while building their Zephyr project which C 
library to use.

I decided to work from there and create a mechanism that could be 
upstreamed into crosstool-ng that would build all three C libraries, 
newlib, newlib-nano and picolibc and offer users a mechanism to select 
between them while building an application with the toolchain. 
Working with the crosstool-ng community, we ended up using the 
'companion library' mechanism for newlib-nano and picolibc to build 
these in addition to the core C library. You can also ask to build only 
one of the three, although the configuration mechanism is a bit klunky. 
Taking advantage of the libstdc++ patches incorporated into GCC, 
crosstool-ng also builds libstdc++ for all three libraries.

All of this work is now in crosstool-ng.



  

 

RIOT
● Embedded OS targeting IoT applications
● Save 5kB compared with newlib
● Adds TLS support using Picolibc routines

hello-world ROM
(bytes)

RAM
(bytes)

newlib 10956 1880

picolibc 5284 1788

RIOT is a an OS for IOT devices. There's a fun group of people working on 
it and I discovered that they were already working on integrating 
picolibc in the summer of 2020. I joined in and helped answer a couple 
of questions. That code got merged in August 2020 and has seen a 
steady uptick in usage by RIOT developers. Because of the 
straightforward RIOT codebase, adding TLS support was easy as it could 
use the Picolibc TLS helpers unchanged. The whole integration work 
took about 500 lines of new code in RIOT, including the TLS bits.

Reviewing RIOT development over the last year, there have been quite a 
few patches related to picolibc, so it seems pretty clear that picolibc has 
taken root in the RIOT community. If you're looking for a great little 
IoT operating system, I'd encourage you to take a look here.



  

 

Zephyr
● LF embedded OS project
● TLS support added using custom code
● Support not upstream yet
● Spurred work on Crosstool-NG
● Uses less ROM than built-in libc

– Especially if you use printf

Many of you are probably familiar with Zephyr, the embedded operating 
system sponsored by the Linux Foundation. I got interested when I 
discovered that they were getting serious about memory protection 
stuff. An embedded operating system that took advantage of memory 
protection hardware available in smaller SoC devices sounds like a good 
thing to me.

The picolibc integration work started about two years ago. I sent an initial 
PR that included TLS support for 32-bit ARM processors. Zephyr has a 
lot more processor-specific assembly code, including much of the 
context switch code where the architecture-specific TLS hooks needed 
to go. It was easier to just do that part inline. After submitting the PR, 
a couple of people who had been thinking about TLS support jumped 
in and made the rest of the TLS support part of Zephyr, and that series 
got merged in, but the main picolibc integration hasn't been accepted 
yet. The initial blocker was lack of toolchain support, which led to 
getting picolibc integrated into crosstool-ng, which led to fixing 
libstdc++ to support other libc implementations. By then, I was off 
working on other things and unable to get back to Zephyr. I've got 
patches rebased and working again; I'll try to get them posted and see 
if someone wants to help bring this series home.

Picolibc could easily replace the builtin 'minimal' C library in the Zephyr 
tree. The picolibc code is smaller and faster in all cases, while also 
including a math library and other parts of a standard C environment. 
This could also replace the cbprintf and printk paths in the system, 
reducing ROM footprints quite a bit while improving standards 
conformance.



  

 

Personal Projects
● AltOS
● ChaosKey
● LambdaKey
● Snek and SnekBoard

I started the picolibc project because I needed a solid C library for my own 
microcontroller projects. Here's a list of projects I've built using picolibc.

First is AltOS, which is a suite of firmware built into products that Bdale 
Garbee and I sell for use in high power amateur rocketry. This firmware 
is also included in several amateur radio satellites currently in orbit. 
While we started with the venerable 8051 microcontroller, we've almost 
completely migrated to ARM Cortex-M processors, ranging from the 
STM32F042 through the STM32L151. We've started looking at some 
Cortex-M4 processors for some applications requiring higher 
performance but haven't gotten there yet. If you're interested, check 
out altusmetrum.org

Next, we built ChaosKey, which is a USB-connected True Random Number 
Generator built on the STM32F042 processor. We built a thousand of 
these and sold them to people around the world. For that same 
hardware platform, I wrote a tiny Scheme interpreter and called the 
result LambdaKey. It was largely a gag, but it did create enough 
language infrastructure for my next project.

That next project was Snek, a subset of Python that runs on a huge range 
of small microcontrollers, from the Atmega 328P in the original 
Arduino to the SAMD21 chips found in a range of Adafruit products. 
Snek is also the primary firmware for SnekBoard, also based on the 
SAMD21 processor. SnekBoard has motor controllers and I/O pins 
designed to work with Lego PowerFunctions hardware. I ran a 
CrowdSupply campaign so that I could build a bunch of these boards 
and started using them in a middle school Lego robotics class just as the 
pandemic began. I'm hoping to get back to teaching kids as soon as I 
can.



  

 

Picolibc/newlib relationship
● Newlib changes regularly merged to 

picolibc
● Some picolibc changes merged to newlib

– Bug fixes in common code
● Newlib cannot accept ABI/API changes

The picolibc code has tried to remain reasonably source compatible with 
newlib so that patches can be exchanged easily. For example, a bunch 
of bug fixes for exceptions and errno support in math functions have 
been passed from picolibc back to newlib. Some patches require editing 
to get them building in newlib again. Without a comprehensive test 
suite, it's difficult to know if they work though.

Changes from newlib are added into picolibc from time to time; few of 
the patches are relevant as most newlib work relates to cygwin support, 
which has been removed from picolibc.

I'm happy to continue supporting the newlib project; much of the code 
for picolibc had it's origins there, and giving back to a community that 
has continued to improve so much useful code for so many years seems 
like the best way to thank them. 



  

 

Picolibc Aspirations
● Continue to improve the code
● More accurate math functions
● Integer-only math implementation

– Faster for soft float cores
● Include SoC-specific configuration bits

– linker script, compiler flags
● Broader adoption in embedded 

environments

There are always things to do with an old body of code like picolibc. Some 
of the functions are still declared using K&R syntax. Much of the older 
and less frequently used code (like the search stuff) is still written with 
a casual approach to typing leaving questions about integer overflow 
safety and the like.

Similarly, the math library is showing its age, with numerous functions less 
accurate than many other C libraries (like musl and glibc). This is 
especially true for the odd corners of the library like tgamma and the 
bessel functions. Picolibc can't simply adopt the glibc implementations 
given the licensing difference. I would also like to see integer-only 
implementations of some of the more important math functions for use 
on soft-float hardware.

To help people starting with a new device, it would be nice to include 
linker scripts and compiler options for a range of embedded SoC parts. 
That way, you wouldn't have to dig through datasheets to discover 
where memory was mapped and what kind of core is provided.

Finally, we're starting to see more activity with people using picolibc, but 
it's still a pretty quiet project.

And that's the end of my talk. I hope you found it useful and I want to 
thank you for taking time to listen today.


